Heterolytic C–O Cleavage in Arylethers Activated by $[Fe(\eta^5-C_5H_5)]^+$

Françoise Moulines,^a Laurent Djakovitch,^a Marie-Hélène Delville-Desbois,^a Françis Robert,^b Pierre Gouzerh^b and Didier Astruc^{*a}

^a Laboratoire de Chimie Organique et Organométallique, URA CNRS No. 35, Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cédex, France

^b Laboratoire de Chimie des Métaux de Transition URA CNRS No. 419, Université Pierre et Marie Curie, Place Jussieu, Bâtiment 74, 75252 Paris Cédex 05, France

The C–O bond of $Fe(\eta^5-C_5H_5)^+$ complexes of aryl ethers is cleaved smoothly by reaction of Bu^tOK in THF or KOH in DME, yielding π -phenate complexes; transetherification can also be achieved *in situ* at room temperature.

The activation of aromatics by the cationic moiety $[M(\eta^{5}-C_{5}H_{5})]^{+}$ (M = Fe or Ru) is well known for nucleophilic addition or substitution^{1,2} and benzylic deprotonation reactions.³ We now report a new type of aromatic reaction which is also activated by the $[Fe(\eta^{5}-C_{5}H_{5})]^{+}$ fragment : heterolytic C–O cleavage of aryl ethers whose driving force is the formation of π -phenate complexes.^{4–11} In the course of our project to develop the chemistry of organometallic molecular trees with multiple redox centres, we have serendipitously found that this cleavage reaction¹² is effected by Bu^tOK or KOH (Scheme 1).

When KOR³ reacts with any complex of type 1 in DME (R³ = H) or THF (R³ = Bu^t) from -50 to 25 °C in the presence of one equiv. KBr or, even better, [Bu₄N]⁺[PF₆]⁻ (Scheme 1, path i, the zwitterion 2 is obtained as a monohydrate,[†] after work-up [as indicated by the elemental analyses of 2b (R⁵ = H)] featuring H bonding. The latter is also apparent in the ORTEP of the X-ray crystal structure of 2c (Fig. 1) which shows a flat phenoxide ligand with a C–O distance of 1.25 Å and an angle between the C(1)–O vector and the ligand plane of 1.55°.[‡]

The parent complex 2a was previously obtained by deprotonation of $[Fe(\eta^5-C_5H_5)(C_6H_5OH)]^+$ and formulated as an oxocyclohexadienyl complex.§ The solution structure is oscillating between the two forms [two mesomeric forms or two tautomers interconverting more rapidly than the IR time scale (10^{13} s^{-1}) as shown by the IR and NMR data]. The complexes 2 are stable except compound 2a which is partly decomplexed in the course of the cleavage reaction (only ca. 10% yield of 2a was obtained along with extensive formation of PhOK). We find that all the complexes 2 exhibit a strong infrared absorbtion at v_{CO} 1545 cm^{-1} (film) inconsistent with a full double bond. Likewise, the ¹³C NMR δ_{CO} chemical shift is located *ca*. 150 (CD₃CN–D₂O) whereas $\delta_{C=O}$ would be expected at *ca*. 190. The addition of $Na^+PF_6^-$ to acetone solutions of complexes 2 before removal of solvent causes strong changes in the IR spectra (film). In particular, the intensity of the v_{C-O} bond at 1545 cm⁻¹ is

Scheme 1 R¹ = alkyl or phenyl; R² = H or alkyl; R³ = H or Bu^t; R⁴ = alkyl, allyl or benzyl; R⁵ = H or Me; counter ion = PF₆⁻. *Reagents and conditions*: i, DME (R³ = H) or THF (R³ = Bu^t), -50 °C \rightarrow +20 °C, ii, DME (R³ = H) or THF (R³ = Bu^t), room temp; iii, DMF, K₂CO₃ (1 equiv.), room temp.

strongly diminished whereas the bond corresponding to v_{C-O} at 1265 cm⁻¹ is strongly increased. This indicates the formation of the hexahapto phenate complex in which the phenate oxygen is coordinated to Na⁺. ¹H NMR spectra of CD₃CN or CD₃COCD₃ solutions of the complexes 2a-b (but not 2c) give very broad patterns, which progressively sharpen upon addition of D₂O until the signals become sharp at $CD_3COCD_3:D_2O$ 1:1 (or $CD_3CN:D_2O$ 1:1). We believe these effects are due to intermolecular ion pairing involving the negatively charged oxygen atom (cf. the dimeric interaction in Fig. 1) inhibiting rotation of the arene ring about the $(\eta^5-C_5H_5)$ -Fe-arene axis. Protonation of 2a to give the phenol complex is achieved using CF₃CO₂D, the (η^5 -C₅H₅) signal in ¹H NMR being shifted from δ 4.5 to 5. In summary, the stereoelectronic features of the phenate ligand strongly depend on the presence of solvent molecules giving rise to dimeric interaction and on potential coordination of the phenate oxygen to a metal.

Alkyl or phenyl groups can be cleaved from 1 by the nucleophile. For instance, a 61% (resp. 42%) yield of 2b is obtained from 1b, 1 equiv. ButOK and 1 equiv. $[Bu_4N]^+[PF_6]^-$ (resp. KBr) in THF. These mild cleavage conditions strongly contrast with the drastic conditions required (200 °C, 10%)

Fig. 1 CAMERON drawing of part of the molecular structure of **2c** showing the hydrogen bonds. Owing to OH···O hydrogen bonds between the water solvent molecule and the phenoxide ligand, the latter is disordered over two positions with 76 and 24% occupancies. For clarity, only one position of the phenoxide ligand has been drawn. Selected interatomic distances (Å): Fe-C(1) 2.269(9), Fe-C(2) 2.14(1), Fe-C(3) 2.09(2), Fe-C(4) 1.96(5), Fe-C(5) 2.05(2), Fe-C(6) 2.07(1), mean Fe-C(7-11) 2.043(6), C(1)-O(1) 1.250(1).

Table 1 Transetherification conditions (Scheme 1, path ii): $20 \,^{\circ}$ C, 1–3 days; (3 mol of KOR³ and 3 mol of R⁴Br per mol of 1 (PF₆⁻⁻ salt); reactions with R⁴I gave close yields. Reported yields of iron complexes were obtained after work-up and purification

R1	R4	R ³	Yield 3 (%)	
Me	allyl	H	71	
Me	benzyl	H	76	
(CH ₂) ₃ Ph	benzyl	H	71	
Ph	allyl	H	79	
Ph	benzyl	Bu ^t	81	

464

yield) for the same reaction in the absence of the Fe(η^5 -C₅H₅)⁺ group.¹³

The transetherification is also achieved *in situ* when the complexes 1 are allowed to react with Bu^tOK (or KOH) and R⁴X. At ambient temperature, these reactions yield 71–81% of the different arylether complexes (Table 1 and Scheme 1, R⁴X = allylbromide or benzylbromide; R¹ = Me, (CH₂)₃Ph or Ph).¹⁴

Finally, alkylation of the phenate complexes can be achieved according to the path iii of Scheme 1. Reaction between **2b** and pentyl iodide in the presence of K_2CO_3 at 20 °C in DMF leads to the quantitative formation of the *O*-alkylated complex.¹⁴ These reactions are thus of synthetic interest for the construction of organometallic molecular trees. The $[Fe(\eta^5-C_5H_5)]^+$ moiety serves as a protecting group in the air stable, easy to handle, zwitterions **2**, for the use of air-sensitive metal-free phenate derivatives.³ Medium effects and their mechanistic features will be further investigated.

Received, 29th July 1994; Com. 4/04669B

Footnotes

† All new compounds gave satisfactory spectroscopic and analytical data. ‡ X-Ray crystal data for 2c: space group $P_{2_1/n}$, a = 14.653(6), b = 12.242(3), c = 8.237(2) Å, $\beta = 92.56(5)$, V = 1476(2) Å³, R = 0.036, Rw = 0.037 for 1184 reflections and 197 variables. Data at 20 °C were collected on a Philips PW 1100 diffractometer using Mo-Kα radiation. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

 $\$ The formulation 11 of the deprotonated phenol complex [Fe+($\eta^{5-}C_5H_5)(\eta^{6-}C_6H_5O^-)$] as an oxocyclohexadienyl complex is presumably connected to the report of an infrared $\nu_{C=O}=1651~cm^{-1}$ in that paper.

¶ This ambivalence of the π -phenate ligand in ruthenium complexes was well demonstrated in the seminal work by Wilkinson *et al.*⁴

References

- S. G. Davies, M. L. H. Green and D. M. P. Mingos, *Tetrahedron*, 1978, 34, 3047; S. G. Davies, *Organotransition-Metal Chemistry*, *Applications to Organic Synthesis*, Pergamon, New York, 1982.
- 2 W. E. Watts, in *Comprehensive Organometallic Chemistry*, ed. G. Wilkinson, E. W. Abel, F. G. A. Stone, Pergamon, Oxford, 1982, vol. 8, pp. 1013–1106.
- 3 D. Astruc, Topics. Curr. Chem., 1991, 160, 47.
- 4 D. J. Cole-Hamilton, R. J. Young and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1976, 1995.
- 5 U. Koelle, M. Hong Wang and G. Raabe, *Organometallics*, 1991, 10, 2574.
- 6 B. Chaudret, X. He and Y. Huang, J. Chem. Soc., Chem. Commun., 1989, 1844.
- 7 M. Kimura, M. Morita, H. Mitani, H. Okamoto, K. Satake and S. Morosawa, Bull. Chem. Soc. Jpn., 1992, 65, 2557.
- 8 S. D. Loren, B. K. Campion, R. H. Heyn, T. Don Tilley, B. E. Bursten and K. W. Luth, J. Am. Chem. Soc., 1989, 111, 4712.
- 9 H. El-Amouri, M. Gruselle, P. A. Jackson, G. Jaouen and J. Vaisserman, Organometallics, 1990, 9, 2871.
- 10 With smaller rings, potentially terminal oxoanions usually adopt the keto structure such as in η³-oxocyclobutenyl complexes; see for instance R. P. Hughes, W. Kläui, J. W. Reisch and A. Müller, Organometallics, 1985, 4, 1761 and refs cited therein.
- 11 J. F. Helling and W. A. Hendrickson, J. Organomet. Chem., 1979, 168, 87.
- 12 For recent examples of C-O cleavage in transition-metal complexes of aryl ethers, see ref. 7 and F. Rose-Munch, J.-P. Djukic and E. Rose, *Tetrahedron Lett.*, 1990, 31, 2589; J.-P. Djukic, F. Rose-Munch, E. Rose and Y. Dromzee, J. Am. Chem. Soc., 1993, 115, 6434.
- 13 R. Stoermer and B. Kahlert, *Chem. Ber.*, 1901, 34, 1812; *The Chemistry of the Ether Linkage*, ed. S. Patai, Wiley, New York, 1967, ch. 2, p. 47; For a recent review on ether cleavage, see: A Maercker, *Angew. Chem., Int. Ed. Engl.*, 1987, 26, 972.
- 14 The synthesis of the complexes 1 from [Fe(η⁵-C₅H₅)(C₆H₅Cl)]⁺ and alkoxides has long been known: A. N. Nesmeyanov, N. A. Vol'kenau and I. N. Bolesova, *Dokl. Adad. Nauk. SSSR*, 1967, **175**, 606; A. N. Nesmeyanov, N. A. Vol'kenau, L. S. Isaeva and I. N. Bolesova, *Dokl. Akad. Nauk. SSSR*, 1968, **183**, 351; C. C. Lee, A. S. Abd-El Aziz, R. L. Chowdhurry, U. S. Gill, A. Piorko and R. G. Sutherland, *J. Organomet. Chem.*, 1986, **315**, 79; 1990, **395**, 293.