Heterolytic *C-0* **Cleavage in Arylethers Activated by** [**Fe(q5-C5H5)]+**

Françoise Moulines,^a Laurent Djakovitch,^a Marie-Hélène Delville-Desbois,^a Françis Robert,⁶ Pierre Gouzerh⁶ **and Didier Astruc*a**

a Laboratoire de Chimie Organique et Organometallique, URA CNRS No. 35, Universite Bordeaux I, 351 Cours de la Liberation, 33405 Talence Cedex, France

^bLaboratoire de Chimie des Metaux de Transition URA CNRS No. 419, Universite Pierre et Marie Curie, Place Jussieu, BBtiment 74, 75252 Paris Cedex 05, France

The C-O bond of Fe(η ⁵-C₅H₅)+ complexes of aryl ethers is cleaved smoothly by reaction of Bu^tOK in THF or KOH in DME, yielding n-phenate complexes; transetherification can also be achieved *in situ* at room temperature.

The activation of aromatics by the cationic moiety $[M(\eta^5 C_5H_5$]⁺ (M = Fe or Ru) is well known for nucleophilic addition or substitution^{1,2} and benzylic deprotonation reactions.³ We now report a new type of aromatic reaction which is also activated by the $[Fe(\eta^5-C_5H_5)]^+$ fragment : heterolytic C-O cleavage of aryl ethers whose driving force is the formation of π -phenate complexes.⁴⁻¹¹ In the course of our project to develop the chemistry of organometallic molecular trees with multiple redox centres, we have serendipitously found that this cleavage reaction¹² is effected by ButOK or KOH (Scheme 1).

When KOR³ reacts with any complex of type 1 in DME (R³) = H) or THF (\mathbb{R}^3 = Bu^t) from -50 to 25 °C in the presence of one equiv. KBr or, even better, $[Bu_4N]^+[PF_6]^-$ (Scheme 1, path i, the zwitterion 2 is obtained as a monohydrate,[†] after work-up [as indicated by the elemental analyses of $2b$ $(R^5 = H)$] featuring H bonding. The latter is also apparent in the ORTEP of the X-ray crystal structure of **2c** (Fig. 1) which shows a flat phenoxide ligand with a C-O distance of 1.25 Å and an angle between the C(1)–O vector and the ligand plane of 1.55° . \ddagger

The parent complex **2a** was previously obtained by deprotonation of $[Fe(\gamma^5-C_5H_5)(C_6H_5OH)]^+$ and formulated as an oxocyclohexadienyl complex.§ The solution structure is oscillating between the two forms [two mesomeric forms or two tautomers interconverting more rapidly than the IR time scale (10^{13} s^{-1}) as shown by the IR and NMR data].[[]] The complexes 2 are stable except compound **2a** which is partly decomplexed in the course of the cleavage reaction (only *ca.* 10% yield of **2a** was obtained along with extensive formation of PhOK). We find that all the complexes 2 exhibit a strong infrared absorbtion at v_{CO} 1545 cm^{-1} (film) inconsistent with a full double bond. Likewise, the ¹³C NMR δ_{CO} chemical shift is located *ca*. 150 (CD₃CN-D₂O) whereas *6c=o* would be expected at *ca.* 190. The addition of Na⁺PF₆⁻ to acetone solutions of complexes 2 before removal of solvent causes strong changes in the IR spectra (film). In particular, the intensity of the v_{C-O} bond at 1545 cm⁻¹ is

Scheme 1 R^1 = alkyl or phenyl; R^2 = H or alkyl; R^3 = H or Bu^t; R^4 = alkyl, allyl or benzyl; $R^5 = H$ or Me; counter ion = PF_6^- . *Reagents and conditions:* i, DME ($\mathbb{R}^3 = \mathbb{H}$) or THF ($\mathbb{R}^3 = \text{B}u^t$), $-50^\circ \text{C} \rightarrow +20^\circ \text{C}$, ii, DME $(R^3 = H)$ or THF $(R^3 = Bu^t)$, room temp; iii, DMF, K_2CO_3 (1 equiv.), room temp.

strongly diminished whereas the bond corresponding to v_{C-O} at 1265 cm^{-1} is strongly increased. This indicates the formation of the hexahapto phenate complex in which the phenate oxygen is coordinated to Na⁺. ¹H NMR spectra of $CD_3\overline{CN}$ or $CD_3\overline{COCD_3}$ solutions of the complexes **2a-b** (but not **2c)** give very broad patterns, which progressively sharpen upon addition of D_2O until the signals become sharp at CD_3COCD_3 : D_2O 1:1 (or $CD_3CN: D_2O \quad 1:1$. We believe these effects are due to intermolecular ion pairing involving the negatively charged oxygen atom *(cf.* the dimeric interaction in Fig. 1) inhibiting rotation of the arene ring about the $(\eta^5$ -C₅H₅)-Fe-arene axis. Protonation of **2a** to give the phenol complex is achieved using $CF₃CO₂D$, the (η ⁵-C₅H₅) signal in ¹H NMR being shifted from 6 4.5 to *5.* In summary, the stereoelectronic features of the phenate ligand strongly depend on the presence of solvent molecules giving rise to dimeric interaction and on potential coordination of the phenate oxygen to a metal.

Alkyl or phenyl groups can be cleaved from **1** by the nucleophile. For instance, a 61% (resp. 42%) yield of **2b** is obtained from 1b, 1 equiv. Bu^tOK and 1 equiv. [Bu₄N]+[PF₆]⁻ (resp. KBr) in THF. These mild cleavage conditions strongly contrast with the drastic conditions required (200 °C, 10%

Fig. 1 CAMERON drawing of part of the molecular structure of *2c* showing the hydrogen bonds. Owing to OH...O hydrogen bonds between the water solvent molecule and the phenoxide ligand, the latter is disordered over two positions with 76 and 24% occupancies. For clarity, only one position of the phenoxide ligand **has** been drawn. Selected interatomic distances (A): Fe- $C(1)$ 2.269(9), Fe-C(2) 2.14(1), Fe-C(3) 2.09(2), Fe-C(4) 1.96(5), Fe-C(5) 2.05(2), Fe-C(6) 2.07(1), mean Fe-C(7-11) 2.043(6), C(1)-O(1) 1.250(1).

Table 1 Transetherification conditions (Scheme 1, path ii): 20 °C, 1-3 days; (3 mol of KOR³ and 3 mol of R⁴Br per mol of $1 (PF₆-$ salt); reactions with R41 gave close yields. Reported yields of iron complexes were obtained after work-up and purification

\mathbb{R}^1	R ⁴	R^3	Yield $3 \ (\%)$	
Me	allyl	H	71	
Me	benzyl	H	76	
(CH ₂) ₃ Ph	benzyl	н	71	
Ph	allyl	H	79	
Ph	benzyl	But	81	

464

yield) for the same reaction in the absence of the Fe(η^5 -C₅H₅)⁺ group.¹³

The transetherification is also achieved *in situ* when the complexes **1** are allowed to react with ButOK (or KOH) and R⁴X. At ambient temperature, these reactions yield $71-81\%$ of the different arylether complexes (Table 1 and Scheme 1, R4X = allylbromide or benzylbromide; R^1 = Me, $(CH_2)_3$ Ph or Ph).14

Finally, alkylation of the phenate complexes can be achieved according to the path iii of Scheme 1. Reaction between **2b** and pentyl iodide in the presence of K_2CO_3 at 20 °C in DMF leads to the quantitative formation of the O -alkylated complex.¹⁴ These reactions are thus of synthetic interest for the construction of organometallic molecular trees. The $[Fe(\eta^5-C_5H_5)]^+$ moiety serves as a protecting group in the air stable, easy to handle, zwitterions **2,** for the use of air-sensitive metal-free phenate derivatives.3 Medium effects and their mechanistic features will be further investigated.

Received, 29th July 1994; Corn. 4104669B

Footnotes

i All new compounds gave satisfactory spectroscopic and analytical data. $\frac{1}{4}$ *X-Ray crystal data* for **2c**: space group $P2_1/n$, $a = 14.653(6)$, $b =$ 12.242(3), $c = 8.237(2)$ \AA , $\text{\B} = 92.56(5)$, $\text{\B} = 1476(2)$ \AA^3 , $\text{\B} = 0.036$, \B *Rw* $= 0.037$ for 1184 reflections and 197 variables. Data at 20 °C were collected on a Philips PW 1100 diffractometer using Mo-K α radiation. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

§ The formulation¹¹ of the deprotonated phenol complex $[Fe^+(\eta^5-C_5H_5)(\eta^6 C_6H_5O^-$] as an oxocyclohexadienyl complex is presumably connected to the report of an infrared $v_{C=Q} = 1651$ cm⁻¹ in that paper.

 \parallel This ambivalence of the π -phenate ligand in ruthenium complexes was well demonstrated in the seminal work by Wilkinson *et al.4*

References

- 1 **S.** G. Davies, M. L. H. Green and D. M. P. Mingos, *Tetrahedron,* 1978, 34, 3047; **S.** G. Davies, *Organotransition-Metal Chemistry, Applications to Organic Synthesis,* Pergamon, New York, 1982.
- 2 W. E. Watts, in *Comprehensive Organometallic Chemistry,* ed. *G.* Wilkinson, E. W. Abel, F. *G.* A. Stone, Pergamon, Oxford, 1982, vol. 8, pp. 1013-1 106.
- 3 D. Astruc, *Topics. Curr. Chem.,* 1991, 160, 47.
- 4 D. J. Cole-Hamilton, R. 3. Young and G. Wilkinson, *J. Chem.* Soc., *Dalton Trans.,* 1976, 1995.
- *5* **U.** Koelle, M. Hong Wang and G. Raabe, *Organometallics,* 1991, 10, 2574.
- 6 B. Chaudret, X. He and Y. Huang, *J. Chem. SOC., Chem. Commun.,* 1989, 1844.
- 7 M. Kimura, M. Morita, H. Mitani, H. Okamoto, K. Satake and **S.** Morosawa, *Bull. Chem. SOC. Jpn.,* 1992, *65,* 2557.
- 8 **S.** D. Loren, **B.** K. Campion, R. **H.** Heyn, T. Don Tilley, B. E. Bursten and K. W. Luth, *J. Am. Chem. SOC.,* 1989,111,4712.
- 9 H. El-Amouri, M. Gruselle, **P.** A. Jackson, G. Jaouen and J. Vaisserman, *Organometallics,* 1990, 9, 2871.
- 10 With smaller rings, potentially terminal oxoanions usually adopt the keto structure such as in η^3 -oxocyclobutenyl complexes; see for instance R. P. Hughes, W. Klaui, J. W. Reisch and A. Miiller, *Organometallics,* 1985, **4,** 1761 and refs cited therein.
- 11 J. F. Helling and W. A. Hendrickson, *J. Organomet. Chem.,* 1979, 168, *87.*
- 12 For recent examples of C-0 cleavage in transition-metal complexes of aryl ethers, see ref. 7 and F. Rose-Munch, J.-P. Djukic and E. Rose, *TetrahedronLett.,* 1990,31,2589; J.-P. Djukic, F. Rose-Munch, E. Rose and Y. Dromzee, *J. Am. Chem. SOC.,* 1993, 115, 6434.
- 13 R. Stoermer and B. Kahlert, *Chem. Ber.,* 1901,34,1812; *The Chemistry* of *the Ether Linkage,* ed. **S.** Patai, Wiley, New York, 1967, ch. 2, p. 47; For a recent review on ether cleavage, see: A Maercker, *Angew. Chem., Int. Ed. Engl.,* 1987, 26, 972.
- 14 The synthesis of the complexes 1 from $[Fe(\eta^5-C_5H_5)(C_6H_5Cl)]^+$ and alkoxides has long been known: A. N. Nesmeyanov, N. A. Vol'kenau and **1.** N. Bolesova, *Dokl. Adad. Nauk. SSSR,* 1967, 175, 606; A. N. Nesmeyanov, N. A. Vol'kenau, L. *S.* Isaeva and I. N. Bolesova, *Dokl. Akad. Nauk. SSSR,* 1968,183,351; C. C. Lee, A. **S.** Abd-El **Aziz,** R. L. Chowdhurry, U. **S.** Gill, **A.** Piorko and R. G. Sutherland, *J. Organomet. Chem.,* 1986,315,79; 1990,395,293.